OP AMP
 Design Problems

1. A non-inverting amplifier has Ri of $1 \mathrm{~K} \Omega$ and R_{f} of $100 \mathrm{~K} \Omega$. Determine V_{f} and B if $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$.

$$
\begin{aligned}
& B=\frac{R_{i}}{R_{i}+R_{f}}=\frac{1.0 \mathrm{k} \Omega}{101 \mathrm{k} \Omega}=\mathbf{9 . 9 0} \times 10^{-3} \\
& V_{f}=B V_{\text {out }}=\left(9.90 \times 10^{-3}\right) 5 \mathrm{~V}=0.0495 \mathrm{~V}=49.5 \mathrm{mV}
\end{aligned}
$$

2. For the non-inverting amplifier shown in figure (1). Determine $A_{\mathrm{cl}(\mathrm{NI})}, \mathrm{V}_{\text {out }}$, and V_{f}.

Figure (1)
(a) $A_{c l(\mathbb{N})}=\frac{1}{B}=\frac{1}{1.5 \mathrm{k} \Omega / 561.5 \mathrm{k} \Omega}=\mathbf{3 7 4}$
(b) $V_{\text {out }}=A_{c(\mathrm{~N})} V_{\text {in }}=(374)(10 \mathrm{mV})=3.74 \mathrm{~V} \mathrm{rms}$
(c) $V_{f}=\left(\frac{1.5 \mathrm{k} \Omega}{561.5 \mathrm{k} \Omega}\right) 3.74 \mathrm{~V}=9.99 \mathbf{~ m V ~ r m s}$
3. Calculate the closed loop gain for non-inverting amplifier has $\mathrm{R}_{1}=4.7 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{F}}=47 \mathrm{~K} \Omega$, and $\mathrm{A}_{\mathrm{OL}}=150,000$.
$\mathrm{ACL}=1+\mathrm{Rf} / \mathrm{R} 1=11$
4. For an inverting amplifier with closed loop gain of -300 , and R_{1} of $10 \mathrm{~K} \Omega$, calculated the value required to R_{f} to satisfy this gain.

$$
\begin{aligned}
& \frac{R_{f}}{R_{i}}=A_{c(I \mathrm{I})} \\
& R_{f}=-R_{i}\left(A_{c(\mathrm{I}(\mathrm{I})}\right)=-10 \mathrm{k} \Omega(-300)=\mathbf{3} \mathbf{M} \Omega
\end{aligned}
$$

5. Determine the approximate values for $\mathrm{I}_{\mathrm{in}}, \mathrm{I}_{\mathrm{f}}$, Vout, A_{cl} in figure (2).

Figure (2)
(a) $I_{\text {in }}=\frac{V_{\text {in }}}{R_{\text {in }}}=\frac{1 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=455 \mu \mathrm{~A}$
(b) $I_{f} \cong I_{i n}=455 \mu \mathrm{~A}$
(c) $V_{\text {out }}=-I_{f} R_{f}=-(455 \mu \mathrm{~A})(22 \mathrm{k} \Omega)=-10 \mathrm{~V}$
(d) $A_{c l(\mathrm{I})}=-\left(\frac{R_{f}}{R_{i}}\right)=-\left(\frac{22 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega}\right)=-10$

